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Abstract. The study of quantum degenerate gases has received much interest in these last years essentially
thanks to the extremely important experimental results of the achievement of Bose-Einstein condensation
of atoms and, very recently, of almost complete degeneracy of atomic fermion gases. Here we want to
present the results of a semi-analytical method for the study of an interacting degenerate fermion gas
based on semiclassical kinetic theory; special care has been devoted to the study of a rotating electron gas,
in a cylindrically symmetrical configuration, radially confined by a uniform magnetic field. The model will
lead to a particular Thomas-Fermi equation which is generalized to take into account finite temperature
and average velocity of the gas, and which is further developed to consider the effects of external fields.

PACS. 05.30.Fk Fermion systems and electron gas – 31.15.Bs Statistical model calculations (including
Thomas-Fermi and Thomas-Fermi-Dirac models) – 03.65.Sq Semiclassical theories and applications

1 Introduction

The study of quantum degenerate gases has received much
interest in these last years essentially thanks to the ex-
tremely important experimental results of the achieve-
ment of Bose-Einstein condensation of atoms and, very
recently, of almost complete degeneracy of atomic fermion
gases [1]. This hopefully will open the path in the future
for the realization of a Bose-Einstein condensate of paired
fermion atoms.

Ideal trapped atomic fermion gases have been treated
theoretically by various authors [2,3], however the difficult
investigation of the non-ideal fermion gas has not yet been
fully accomplished.

Here we want to present the results of a method [4]
for the study of an interacting degenerate electron gas
based on semiclassical kinetic theory [5]; in particular we
consider a rotating electron gas, in a cylindrically sym-
metrical configuration, radially trapped (confined) by a
uniform magnetic field. This will lead to a particular
Thomas-Fermi equation which is generalized to take into
account finite temperature and average velocity of the gas,
and which is further developed to consider the effects of
external fields.

In this approach the exchange and correlation effects
have not been taken into account, but it shouldn’t be too
difficult to include them since the basic Thomas-Fermi
model has been extended in this direction in the past.

Several results of the semiclassical kinetic theory coin-
cide indeed with those obtained by a full quantum treat-
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ment of the same problem; this really stands as a val-
idation of the bases of our method and approach, which
proved to be successful even for the study of certain trans-
port properties of weakly degenerate plasmas and for the
calculation of the transport coefficients of electrons in met-
als at low temperatures, topics which we already consid-
ered elsewhere [6]. Kinetic theory in fact gives immedi-
ately the possibility of treating directly non-equilibrium
cases and of extending equilibrium ones outside equilib-
rium itself.

The degree of quantum degeneracy of a gas of particles
of mass m, temperature T , and mean density n can be
estimated through the Sommerfeld’s parameter ∆ [7]:

∆ =
nh3

G(2πmkT )3/2
(1)

where k is the Boltzmann constant and G an internal fac-
tor of degeneracy. The higher is ∆, the higher is the degree
of degeneracy of the gas. A gas is said to be completely de-
generate when ∆→∞, strongly degenerate when ∆� 1,
weakly degenerate when ∆ ≈ 1 and non-degenerate when
∆� 1 respectively.

The basic semiclassical kinetic equation for the de-
scription of degenerate gases is the Boltzmann-Uehling-
Uhlenbeck (BUU) equation [8]:

Df
Dt

=
∫

[f ′f ′1(1 + ξf)(1 + ξf1)

− ff1(1 + ξf ′)(1 + ξf ′1)]gσdΩdv1 (2)
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where
Df
Dt

=
∂f

∂t
+ v · ∂f

∂r
+

F
m
· ∂f
∂v

is the total derivative of the particle distribution function
f in the phase space and ξ = δh3/Gm3 with

δ =


0 for non-degenerate gas particles,
−1 for degenerate fermion gas particles,
1 for degenerate boson gas particles.

The right-hand-side of the BUU equation is the particle
collision term (∂f/∂t)Coll.; by definition it must vanish
at thermodynamical equilibrium; there exist only two dis-
tribution functions that render identically zero the colli-
sion term and therefore are representative of equilibrium
states: the Fermi function for fermions (δ = −1) and the
Bose function for bosons (δ = 1) respectively; these func-
tions can be obtained by solving for the distribution func-
tion f the equation (∂f/∂t)Coll. = 0 [8]. This means that
at equilibrium we are left only with the left-hand-side of
the BUU equation equal to zero.

2 The model and its theoretical
background [4]

We have seen in the preceding paragraph that the appro-
priate kinetic equation to describe quantum degenerate
systems in the semiclassical approach is the BUU equa-
tion. For the case of an electron gas (G = 2) it can be
written as

∂f

∂t
+ v · ∂f

∂r
+

F
m
· ∂f
∂v

=
∫

(f ′ f ′1(1− γf)(1− γf1)

− ff1(1− γf ′)(1− γf ′1))gσ(g, χ)dΩdv1 (3)

where γ = h3/2m3.
Since we are going to study here certain equilibrium

properties of the gas it is more convenient to make use of
the H theorem and consequently write the equation in the
form adequate for the logarithm of the distribution func-
tion; if we moreover want to take explicitly into account
a finite average velocity v0 we have finally:

(v0 + c) · ∂ ln f
∂r

+
(

F
m
−
(

v0 ·
∂

∂r

)
v0

)
· ∂ lnf
∂c

− ∂ ln f
∂c

c :
∂ v0

∂r
= 0 (4)

where obviously c is the peculiar velocity.

Introducing, as a logical consequence of the state of
thermodynamical equilibrium we want to examine, the
Fermi distribution function

fF(r, c) =
γ−1

A(r)e
mc2
2kT + 1

=
γ−1

e
1
2mc

2−µ(r)
kT + 1

(5)

into equation (4) we get the following equation which
must be identically satisfied:

e
mc2
2kT

e
mc2
2kT + 1

[
(v0 + c) ·

(
∂A

∂r
−A mc2

2kT 2

∂T

∂r

)
+
(

F
m
−
(

v0 ·
∂

∂r

)
v0

)
· cmA
kT
− mA

kT
cc :

∂ v0

∂r

]
= 0

(6)

This implies that all the coefficients of successive powers
of the peculiar velocity must identically vanish; we
therefore obtain the following four equations:

mA

kT
cc :

∂v0

∂r
= 0, (7a)

v0 ·
∂A

∂r
= 0 ⇒ v0⊥

∂A

∂r
, (7b)

A
mc2

2kT 2
c · ∂T

∂r
= 0 ⇒ ∂T

∂r
= 0, (7c)

∂A

∂r
+

A

kT

(
F−m

(
v0 ·

∂

∂r

)
v0

)
= 0. (7d)

These equations are as general as equation (6) but are in-
deed extremely useful; in particular equation (7c) states,
as logical, that at equilibrium the temperature must be
constant and equation (7d) establishes an equilibrium re-
lation between the various external and internal forces act-
ing over the gas. Moreover it provides a relation between
the chemical potential and all the other forces.

We consider now an electron gas, in condition of cylin-
drical symmetry (ẑ being the symmetry axis), described
through cylindrical coordinates r = [r, ϑ, z]. The external
force is given by a constant and uniform magnetic field
along the symmetry axis, B = Bẑ; excluding correlation
and exchange effects, the remaining internal force is given
by the self-consistent Vlasov electric field.

Under these conditions all the quantities in equa-
tion (7d) will depend at most on r alone. This allows a
simple form of the average velocity to be found through
equation (7a); expanding the double dot product, and tak-
ing into account that to have stable equilibrium no radial
velocity must be present (this practically corresponds to
study systems whose quantum number l is 0), we get:

see equation (8) below

cc :
∂v0

∂r
= crcr

∂v0r

∂r
+ cϑcϑ

(
1
r

∂v0ϑ

∂ϑ
+
v0r

r

)
+ czcz

∂v0z

∂z
+ crcϑ

(
r
∂

∂r

v0ϑ

r
+

1
r

∂v0r

∂ϑ

)
+ cϑcz

(
1
r

∂v0z

∂ϑ
+
∂v0ϑ

∂z

)
+ crcz

(
∂v0z

∂r
+
∂v0r

∂z

)
= crcϑ

(
r
∂

∂r

v0ϑ

r

)
+ crcz

∂v0z

∂z
= 0 (8)
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so that we have:

∂v0z

∂z
= 0 ⇒ v0z = constant

∂v0ϑ

∂r
− v0ϑ

r
= 0 ⇒ v0ϑ = ω × r

where ω = ωẑ is a constant vector, directed along the
symmetry axis, representing an angular velocity for the
gas. In total the average velocity can be written as:

v0 = v0z ẑ + ω × r. (9)

Now, inserting this expression and the Lorentz force (ex-
ternal magnetic field + unknown internal self-consistent
electric field) into equation (7d) we are left only with the
following scalar equilibrium equation that connects the
gradient of the chemical potential, the Lorentz force and
the centrifugal force:

kT
d
dr

(lnA)− e(Er + ωrB) +meω
2r = 0. (10)

Expressing the electric field as the gradient of a poten-
tial V

Er = −dV
dr

, (11)

for which we assume the following condition

limr→0+V (r) = 0, (12)

equation (10) can be solved to give

µ(r, T ) = µ(0, T ) + eV (r) +
1
2
mω(ω − ωc)r2 (13)

where µ(0, T ) is the chemical potential for an uniform elec-
tron gas, i.e. the value of the chemical potential when no
forces are present, and ωc = eB/me is the cyclotron fre-
quency, representative of the external magnetic field. In-
serting equation (13) into the Fermi distribution function
and integrating all over the space of velocities (making use
of first order Sommerfeld’s lemma and assuming the usual
boundary conditions in momentum space for the distribu-
tion function) the electron density can be found:

n(r)=
8π
3h3

(
2me

(
eV (r) +

1
2
meω(ω − ωc)r2 + µ0

))3/2

×
(

1 +
(πkT )2

8

(
eV (r) +

1
2
meω(ω − ωc)r2 + µ0

)−2
)

(14)

here µ0 = µ(0, 0) ≡ EF is the Fermi energy. In this way
we have determined through kinetic theory methods the
extension to non-zero temperature cases of the Thomas-
Fermi equation as generalized by Marshak and Bethe [9]
and as studied by Feynman, Metropolis and Teller [10];
moreover we added the important case of a non zero-
average velocity and the effects of a magnetic field.

As example of this approach we consider here the case
of a completely degenerate electron gas. Assuming a com-
plete degeneracy, we can put T = 0 in equation (14) to
obtain

eV (r) = n(r)2/3 1
2me

(
3h3

8π

)2/3

− 1
2
meω(ω − ωc)r2 − µ0.

(15)

To get a self-consistent description of the gas we now make
use, in a system together with the preceding equation, of
Poisson’s equation written in cylindrical coordinates:(

d2

dr2
+

1
r

d
dr

)
V (r) =

e

ε0
n(r); (16)

solving the system we have finally an equation for the
electron density:

d2n

dr2
− 1

3n

(
dn
dr

)2

+
1
r

dn
dr

= 3me

(
8π
3h3

)2/3

× n1/3

(
2meω(ω − ωc) +

e2

ε0
n

)
(17)

which must be coupled with the following conditions for n:

1. limr→0+n(r) = n0

to fix the total number of electrons (18a)

2. limr→0+
dn
dr

= 0 to warrant the symmetry (18b)

3. limr→+∞n(r) = 0 to warrant confinement (18c)

we will see in the following paragraph that only the first
two conditions are really necessary to solve equation (17)
in those regions of the (angular velocity-cyclotron fre-
quency) space where confinement is assured.

3 Analytical results

Even if equation (17) can be solved exactly only numeri-
cally, we can nonetheless find some interesting analytical
results.

First of all let us investigate the concavity of the den-
sity near the origin; only two cases are obviously possible:

1. n′′(0) > 0. In this case the first derivative of the den-
sity must be positive near the origin, so that the lhs
of equation (17) is positive in the neighbourhood of
the origin; hence even the rhs must be the like. Then,
because the density is positive-defined and must van-
ish at infinity, it must reach a maximum and then de-
crease. However in a point of maximum n′ must vanish
and n′′ must be negative; this would imply that in a
neighbourhood of the maximum point the lhs of equa-
tion (17) is negative but this is impossible because,
until n(r) > n(0) > 0 (condition to have a maximum)
the rhs remains positive.
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2. n′′(0) < 0. In this case the first derivative of the den-
sity is negative near the origin and so negative near
the origin is the lhs of equation (17) too. The same
must be of the rhs. Because the density must vanish
at infinity and because it cannot have local minima it
must always be decreasing, as logic suggests. In fact
in a minimum point the first derivative is zero and the
second derivative is positive, so that near the minimum
point the lhs of equation (17) is positive and positive
must also be the rhs, but this is impossible since near
the minimum point 0 < n(r) < n(0) and the rhs would
remain negative.

In view of the above considerations we see that only
case 2 is compatible with the boundary conditions and
that the density cannot have minima or maxima and that
it can only decrease. Case 2 is expressed analytically by:

n′′(0) < 0 ⇒ limr→0+3me

(
8π
3h3

)2/3

× n1/3

(
2meω(ω − ωc) +

e2

ε0
n

)
< 0 (19)

or by

2meω(ω − ωc) +
e2

ε0
n0 = 2meω(ω − ωc) + meω

2
p < 0

(20)

where

ωp =

√
n0e2

meε0

is the plasma frequency at the density n0 = n(0).
Inequality (20) gives the domain of values of the an-

gular velocity and of the cyclotron frequency to have con-
finement of the electron gas, to realize, in other words,
a condition in which the magnetic field is sufficient to
counterbalance the effects of the centrifugal force and of
the self-consistent repulsive electrical potential.

Inequality (20) is satisfied by

ω2 ≤ ω ≤ ω1 (21)

with

ω1,2 =
ωc

2

1±

√
1− 2

(
ωp

ωc

)2
 · (22)

Figure 1 shows an universal confinement region given by
the two curves (22) [4,5].

Figure 2 shows the confinement region for unity of den-
sity at the origin, as a function of the confining magnetic
field.

As one could expect, the values permitted to the an-
gular velocity ω increase with the confining magnetic field
and vice versa. It can also be verified that the higher n(0)
the higher must be the confining field.
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Fig. 1. Universal confinement region.
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Fig. 2. Confinement region for n(0) = 1 m−3.

Now, having established and studied the domain of
confinement, we want to find an approximate analytical
solution to equation (17).

We look for solutions in the small r range; here, since
n(0) is limited and n′(0) = 0, we can neglect the term
∝ (n′)2/n in equation (17); moreover we notice that the
rhs of equation (17) is a non-linear function of n; in the
neighbourhood of the origin we can expand this non-linear
function in a Taylor series around n0 and truncate it at
order 1; we remember that:

n1/3(a+ bn) ∼= 1
3

(2a− b+ (a+ 2b)n).

In this way equation (17) can be written as:

n′′ +
n′

r
=
c

3
(2a− b+ (a+ 2b)n)

where a = 2meω(ω − ωc), b = e2/ε0 and c =
3me(8π/3h3)2/3.

This simplified equation, with the initial conditions
stated above, has as solution the following (tilde means
the solution is approximate):

ñ(r) =
1

4b+ a

(
b− 2a+ 3(a+ b)J0

(
r

√
− c

3
(4b+ a)

))
(23)
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Fig. 3. Confinement regions for n(0) = 1 m−3: C. = confine-
ment; N.C. = no confinement. Lines: (1) ω = 0.5ωc, (2) confine-
ment region boundary for the approximate equation, (3) plane
bisector, (4) confinement region boundary for the exact equa-
tion.

where J0 is the zeroth-order Bessel function of the first
kind.

We see that the solution has in itself the modified do-
main for confinement for the simplified equation; in fact
we remember that [11]:

1. J0(ix) ∈ R ∀x ≥ 0,

2. J0(ix) ≡ I0(x) ≥ 1 ∀x ≥ 0,

3. J0(x) ≤ 1 ∀x ≥ 0.

where I0(x) is the zeroth-order Bessel function of the sec-
ond kind. From equation (23) we see therefore that to have
a meaningful approximate solution we must have:

4b+ a < 0

which gives us the restricted domain of confinement for the
approximate equation and solution as shown in Figure 3.

As it is good to find, the confinement region for the
approximate equation lies inside the larger region of the
exact equation. Moreover we see that the upper bound of
the permitted angular velocities has the bisector of the
plane as asympt.

Obviously the validity of the approximate solution
must be restricted to zones far away from the point of
its first zero. We will see in the next paragraph that the
approximate analytical solution is quite good in compar-
ison to the numerical solution and that it is mathemati-
cally good also outside the confinement region, even if the
physical meaning is lost.

4 Numerical results

Equation (17) was solved also numerically by use of stan-
dard methods and packages such as 5th order Runge-
Kutta and Livermore stiff ODE solvers [12]. This numeri-
cal solution was then used to estimate the error made by
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Fig. 4. Density profiles: transition between confinement and
non-confinement state for various values of the density at the
origin (10, 18, 20, 21, 22 and 23 m−3 respectively) and for
ωc = 375 Hz, ω = 0.5 × 375 Hz.
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Fig. 5. Density profiles: transition between confinement and
non-confinement state for various values of the angular veloc-
ity ω = αωc (α equals to 0.7, 0.8, 0.9, 0.95, 0.98, 0.99 and 1
respectively) and for ωc = 375 Hz and n(0) = 1 m−3.

the numerical techniques by means of the evaluation of its
residual; we fitted the numerical solution to a 5th order
polynomial and tested its accuracy against the numerical
solution; then we inserted it into the initial equation and
found that the residual error made herein didn’t exceed
the value of 2 × 10−26 m−3 with respect to values of the
order of 1 m−3.

Figure 4 shows the behaviour of the solution for various
values of one parameter.

It shows how the solution converges or diverges, giv-
ing confirmation of confinement or non-confinement re-
spectively (this last case loosing its physical meaning, but
retaining the mathematical one, as happens for the ap-
proximate analytical solution), for fixed values of the an-
gular velocity and of the confining field, but for different
values of the density of electrons at the origin.

Figure 5 shows how the solution converges or diverges,
giving confirmation of confinement or non-confinement
respectively (this last case loosing its physical meaning,
but retaining the mathematical one, as happens for the
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Fig. 6. Density profiles: comparison between approximate an-
alytical solution and the equivalent numerical one.

approximate analytical solution), for fixed values of the
confining field and of the density at the origin, but for
different values of the angular velocity.

Figure 6 compares the approximate small r-range an-
alytical solution and the numerical one for n(0) = 1 m−3

and for 2ω = ωc = 375 Hz.
As can be seen there is good agreement between the

two in a large part of the domain.

5 The case of the ideal Fermi gas

We want here to examine also the interesting case of the
ideal electron gas; this task is easily accomplished by set-
ting V and T to zero in equation (14). We get:

n(r) =
8π
3h3

(
2me

(
µ0 +

1
2
meω(ω − ωc)r2

))3/2

(24)

where obviously 0 < r < R,

R =

√
2µ0

meω(ωc − ω)
,

and ωc > ω to have confinement.
We see that the Pauli Principle, taken into account

by the Fermi statistics, is shown through an effective re-
pulsion between the electrons that prevents them from
collapsing together at r = 0; this is a confirmation of the
fact that the ideal Fermi gas then is not an ideal gas in
the usual sense, but has strong internal features that dis-
tinguish it from the ideal non-degenerate gas of identical
particles [13].

In Figure 7 the density profiles of the ideal and non-
ideal electron gas are compared for equal total number of
particles per unit length N ∼= 0.0023 m−1 and for equal
magnetic field and angular velocity (ω = 4.2 × 106 Hz,
ωc = 8 × 106 Hz). The non-ideal gas profile has been
numerically obtained with n(0) = 1010 m−3; this profile
has been then integrated to evaluate N so that, from this
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Fig. 7. Comparison between density profiles for the ideal elec-
tron gas and the non-ideal one.

Fig. 8. Natural logarithm of the confinement radius as a func-
tion of cyclotron frequency and density n0; black curves are
iso-radius lines.

value, the chemical potential for the ideal gas could have
been calculated.

As results, the non-ideal gas profile is lower but larger
while the ideal gas one is narrower and higher as one could
expect. We report also that these differences between the
two profiles increase with N , as logical.

6 Conclusions

In this paper we have presented some numerical results
of a method developed from semiclassical kinetic-theory
to study certain equilibrium properties of a non-ideal de-
generate fermion gas. In particular we have focused our
attention to the influence of angular velocity and exter-
nal magnetic field upon the radial confinement of the gas
itself. The total number of particles, the intensity of the
trapping magnetic field and the value of the average an-
gular velocity all influence heavily the confinement radius.
As a whole we have studied the variations of this quantity
as a function of ω, ωc and n0.
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Further numerical investigations permit us to propose
the approximate Figure 8 which gives the natural loga-
rithm of the confinement radius as a function of n0 and
ωc for the fixed ratio of ω/ωc = 1/2; the curves above
the surface are iso-radius lines. This approximate figure
is the result of a best fitting of hundreds of [n0, ωc, ln(R)]
points taken from the confinement region with the further
restriction that ω/ωc = 1/2. The density n0 was chosen in
the range [1018, 1027] m−3 and the cyclotron frequency in
the range [1010, 1016] Hz.

We have also shown the differences in the profiles from
the ideal-gas case.

For the strong differences from the classical gas case
see [5].
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